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Competitive diffusion into two reactive spheres of different reactivity and size

Heng-Kwong Tsab
Department of Chemical and Materials Engineering, National Central University, Chung-li, Taiwan 320, Republic of China
(Received 18 February 2002; published 23 July 2002

Exact series solutions for the reaction rates of two reactive spheres of different reactivity and size are
presented. The reaction rates are explicitly expressed in terms of the interparticle distance from reaction- to
diffusion-limited conditions. The competitive diffusion favors the larger particle and the reaction rate of the
smaller one is significantly reduced as the size ratio increases. For interactions between a diffusion-limited sink
and a reaction-limited one, the diffusive interaction favors the reaction rate of the former and hinders that of the
latter. Several approximate expressions have been proposed and compared with the exact results. The mono-
pole approximation always underestimates the rate of the smaller sink for diffusion-limited reaction. The
asymptotic limit of large size ratio is also analyzed. The asymptotic expression gives a quite accurate result if
the smaller particle is regarded as a point sink plus a point dipole.
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I. INTRODUCTION In this paper, the reaction rates for diffusion into two un-
equal sinks is obtained analytically from reaction- to
Diffusion to the reactive particles is a subject that is rel-diffusion-limited conditions. The rate constants of the first-
evant to a great number of chemical and physical processesrder surface reaction on the two sinks of different size can
these include reactions in porous solids and catalysts, crystge different. The outline of the paper is as follows. In Sec. Il
growth and coarsening, metabolism rates in cells,[@t¢]. ~ On the basis of twin spherical expansion, the exact series
The diffusional interaction of a pair of reactive particles is of Solutions are explicitly expressed in terms of the interparticle
interest in investigating the effect of the existence of thedistance and the size ratio. The rate of diffusion-limited re-
second partide on the reaction rate. Previous studies on tl'ﬁgtlon is derived in Sec. Ill and the reaction rate associated
diffusion-reaction prob|ems have primar”y focused on iden_With a first-order surface reaction is obtained in Sec. IV. In
tical sinks[3—9]. In the limit of pure diffusion control, Sam- Sec. V the asymptotic analysis for large size ratio is pre-
son and Deutch3] have solved the Laplace equation to ob- sented. By including the first few multipole contributions
tain the reaction rate of two reactive sinks in terms ofterms, analytical approximations are proposed and their ac-
bispherical coordinate. Zoia and Strieddt have accounted curacies are assessed by the exact solution.
for the finite surface reaction rate by following the same
approach. Both the exapt] and asymptoti¢5] solutions of Il. THEORETICAL BACKGROUND
the reaction rate are obtained by solving the recurrence rela-
tions iteratively. Their solution form is somewhat unhandy. Consider a reactant diffusing with a diffusiviy through
The reaction rate of the diffusion-reaction problem, which isthe inert bulk phase surrounding two reactive spheres of radii
explicitly expressed in terms of interparticle distance hag and a,. Their center-to-center distance B apart. The
been derived recently by twin spherical expansi6h The  reactant concentratiar(r) is described by the Laplace equa-
results obtained by keeping terms up to quadrupole levelion
gives values in excellent agreement with the exact solution. 5
Since the size distribution of the sinks or traps in many DV<e(r)=0. @
practical systems is not monodisperse, there is a need to
understand the competition effects on the reaction rate due #t large distance from the reaction pair, the concentration is
unequal sizes. The effect of polydispersity in trap size on th€=c... By adopting a dimensionless concentrativs (c..
reaction rate associated with diffusion-controlled reaction—c)/c.., this problem is transformed into a dissolved sub-
among unbounded dispersions of spherical sinks has beeatance diffusing away from the source pair with=0 at
examined[10—14. The reaction ratérelative to the mono- infinity. Assume that the reaction on the reactant-
disperse cage is found to increase with increasing impenetrable surface is first order. Since the diffusional rate
interfacial-surface area of the sinkk0,11. Nonetheless, to equals the reaction rate on the surface of the spherical sink,
our knowledge no theoretical expression for two unequal reene has the boundary condition
active spheres is available. In addition to polydispersity in
size, the reactivity of the sinks may be different. For ex- DVw:-n=Kksi(w—1), 2
ample, in the biological waste-water treatment and cheese
manufacture, multiple microbial species are required. As avheren; is the outwardly directed unit normal aid; is the
result, the competition effect may occur for two species withsurface reaction rate constant of the particlé the reaction
different ability (reactivity) of utilizing the limiting nutrient.  is pure diffusion control, the boundary conditions on the sur-
faces of the particles become=1, i.e.,c=0.
The Laplace equatiofil) can be solved in spherical coor-
*Email address: hktsao@colloid.che.ncu.edu.tw dinates by the method of twin spherical harmonic expan-
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sions. Owing to the azimuthal symmetry, the solution isThere are two spherical coordinate systems,,®;) and
given by (r»,65), with origins located in the centers of sphere 1 and
nil 2, respectively. One of the multipole expansions can be
%) P, (c0s6s) transformed into the other set of spherical coordinates
I " 2| through an addition theorem of Legendre functions derived
(3) by Hobson[15],

* a, n+1
w= [fn(—) P,(cosb,)+g,
n=0 r

1 n+1 1 n+1§ n+q Fa_i q
™ P,(coséy) = Rl &l g /IR Py(cosfs_y) for rz_<R. (4)
The concentration distribution can then be rewritten as
* n+1 r o m+n)\/a m+1
W(rq,01)= E 1) E EZ P,(cosh;) for r;<R 5)
or
* a, n+1 r n ® m+n a; m+1
W(ry,05)= > | gn| — = 2 f = P,(cosh,) for r,<R. (6)
n=0 r R m=0 n R
|
The coefficientd; andg; are to be determined by the bound- <
ary condition. f,.=> f and g,= E gl (10
=0

Iil. DIFFUSION-LIMITED CONDITION When R— o, the above result should reduce to that associ-
In the limit of pure diffusion control for both sinks, the ated with an isolated reactive sphere. Consequently, we
boundary conditions are simply choosef (¥ andg(? to satisfy the solutions of a single sphere
of radlusal or a,, respectively,
wW(ri=a;)=w(r,=a,)=1. (7
o _ N =00 and gf”=3, (11
Substituting Eqs(5) and(6) into the boundary conditiofi7)
and using the orthogonality property associated with therpis result can serve as a leading order solution.
Legendre polynomials yields Inserting Eq.(10) into Egs.(8) and (9), one obtains the
level k correction,f(? andg{¥, in terms of the solution at

a\" & m+n m+1 _ (k—1) (k=1)
5no:fn+(ﬁl m2=o oo (22 @ (k=1) level, fi™ andgi, for k=1,
a.\" * m+n\/a m+1
and (—_ 2L (k—1) a
f =l 290 IR (12)
a, n * m+n a, m+1
= —< — and
5n0 gn+ R) mEZO fm n R ) (9)
o +1
where8,,=1 for n=m, 8,,=0 otherwise. W__[22 nZ f(k=1) m+n)fag)" (13)
Equations(8) and (9) can be solved analytically by the " R/ m=o ™ n R

iteration method. Leff,, and g,, be expressed in terms of
infinite series, The solutions off ) andg{¥’ can then be obtained and

a

R

(14

n+2(m1+---+mk_1)+k( 1)2(m1+m3+»--)+[(k+1)/2]
S
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wheres=a,/a; andmgy=n. Note thaf{x] in the exponent of
s denotes the largest integer less than

The dimensionless reaction rate of the reactive sphere
i, 2;, scaled by that associated with the same isolated par- w

ticle, is given by

—j DVw-n;dA
— _ A _ o
)—41( )_ 47TDalcoo - f(oo)
and
—f DVw-n,dA
EaR)=—— - (15
=2 4mDayc,, g’

where the dimensionless reaction ratés obtained by using
Egs. (5) and (6) and the orthogonality property. If we keep
the series solution up taag/R)°, the reaction rates are

o a2+1a221a23+1+1 a4
=SR=ERITSIR) TSIR) TlsTe/ IR
1.2 azs+O 2)° 16
“Istets)lr] O 19
and
_ 1la,) 1(a,\? 1/a,\® (1 1
2R=1-5IR)*5R] "2lR] Tt
4 6
a, 1 1 1)\fa, a,
J— — | — J— R J— + J—
R 2 & §\R Ol R a7

Equations(16) and(17) are accurate foR>(a;+ay,). They
reduce to the result of two identical sinks when 1 [6].

IV. FIRST-ORDER REACTION

When the rate of surface reaction is comparable to the
diffusional rate for both sinks, the boundary condition, Eq.

(2), must be employed. Inserting EdS) and(6) into Eq.(2)
leads to

n

f Al AMi-n (ay
"+t AT+ (n+1) (R
- m+n)[a,|™?
X 2 Om = (18)
m=0 n R

and
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At 5 ANt-n (a,
9n NI+l 0 A+ (+1) R
m+n)/a,\™"!
X f — 19
2t )R (19

The parametek; 1=ksiiai /D denotes the ratio of the reac-
tion rate to the diffusional rate associated with the pariicle
The process of the reaction on the particle diffusion lim-
ited for \; *>1 and reaction control ik; *<1.

Again, we adopt the series solution, Ef0), to solve the
foregoing equations. The leading order solution is chosen to
be that associated with the corresponding isolated sphere,

ALl
f(0)2—5
"ot (n+n)
and
Aol
(0):;5 ) (20)
"+

In terms of the solution atk(—1) level, fE,k_l) and gﬁk_l),
for k=1, one obtains

a n * m+n a m+1
K _ A (k=1) 2
fn Al,n( R) I”nz:O gm n R) (21)
and
a n * m+n a m+1
K _ _ @2 (k—1) “a
; Az,n(R) 2 ( ; ) 5 . @
where
A ten A t=n
Ayp= N—1, /4y Agn= N1, -\
' N T+ (n+1) ' N, "+ (n+1)
(23
for n=0.

The general solution can then be expressed as
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0 k-1
1+m
.I:(k)_( 1)kA (A(k+1) 2[(k+1)/2Ak 2[(k/2)]) E E [ ( Ai+1—2[i/2],mi
m;=0 mk 1=0 [ i=1 m;
a n+2(mg+---+mg_q)+k
% El g2(my+mg+- ) +[(k+1)/2] (24)
and
” ” o mi_+m,
gk)_( l)kA2 (Ak 2k/2]A(k+l) 2[(k+l)/2) Z Z [H ( Aiz[(il)lz]'miJ
m1=0 mk 1= =0 =
a, n+2(my+---+mg_q)+k 1 2(mg+mg+---)+[(k+1)/2]
>< J— —
R S (25

The dimensionless reaction raf€; associated with the
spherel, scaled by that of the isolated particle, is given by

—J' DVw-n,dA
— -~ A o
21(R)= T 10
1 0
47TDalch
N +1
and
—f DVw-n,dA
— A 9o
E.(R)= ) ZW' (26)
A; Jdo
4’7TDa20Oc 1
N, +1

If the series solution is truncated aftex,(R)°, the reaction
rate is written as

— _ ) Aiohpofaz)? Al,OAg,O ap\®
RiR)=1 Aw(ﬁ)* s Rl 77 s IR
A1,0/\2,1+ (/\1,01\2,0)2 az 4_ AroA20M21
S g2 R S
A%oAgo Al,lAgo ° a,)\°®
32 + 53 E +0 E (27)
and
=,(R) = 1_A_10 az Ao az 2_ Aio/\z,o a
-2 s |R s R 2 |R
A1,01\2,0)24_1\1,1/\2,0 az 4_ AiOAZ,l
s? s® R s?
n AioAg,o_}_ A1oA11A 20 a 5+O az 6
S8 st R R

(28)

WhenA; g=A,0=1, Egs.(27) and(28) reduce to Eqs(16)
and (17) for diffusion-limited condition. On the other hand,
for s=1 and A;,=A,,, we recover the results for two
identical sinkg6].

V. RESULTS AND DISCUSSION

The reaction rates of two unequal spherical sinks im-
mersed in an infinite domain are calculated for different size
a; and reactivityk;. Using the method of twin spherical
expansion, the reaction rate can be explicitly expressed in
terms of the interparticle distance from reaction-limited to
diffusion-limited conditions. Different from identical sinks,
there are three independent dimensionless parameters in de-
termining the reaction rata,; *, \,*, ands. A, * represents
the resistance ratio of diffusion to surface reaction associated
with the sinki and s is the size ratio. There exist three
asymptotic limits: (1) diffusion limited, \; '>1 and A, *
>1; (2) A\; <1 and\, '>1; (3) reaction limited,\; <1
and)\2’1<l. The second regime corresponds to the diffusive
interaction between a reaction-limited sink and a diffusion-
limited one.

Figure 1 shows the variation of the dimensionless reaction
ratesZ with the center-to-center distanBefor the size ratio
s=2. The cases considered af#) diffusion-limited condi-
tion, Ag'=\; '=; (2) two sinks of the same reactivity,

=2 and\; *=4. As anticipated, the dimensionless reac-
tion rates rise and approach unity as the separation increases.
Moreover, the diffusional interaction is more significant for
the fast surface reaction than for the slow one. For diffusion-
limited condition, the rates of the two particles at contact are
E,=0.852 for the larger sink and ;= 0.494 for the smaller
one. Note that the reaction rate for a pair of identical sinks at
contact (relative to that of an isolated sipks In2. As a
consequence, one important feature revealed in Fig. 1 is that
the competitive diffusion favors the larger particle and the
reaction rate of the smaller sink is substantially reduced.

To further demonstrate the effect of size differences on
the rate, Fig. 2 depicts the variation of the reaction rate of
two contact sinks with the size ratio. It clearly shows that the
existence of a larger sink nearby leads to a significant reduc-
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FIG. 1. The variation of the dimensionless reaction rate with the

center-to-center distance for the size ratio2.
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FIG. 3. The variation of the dimensionless reaction rate of two
contact sinks with the paramet(?xr;l for different size ratioss
=1 and 2.

tion of the reaction rate, which declines as the size ratio is
increased. On the other hand, with a smaller sink in theas)\;1>1 (=10), the reaction rates are basically the same
neighborhood, the reaction rate is disturbed only to somas those of diffusion-limited reaction, which are determined

extent. The minimum reaction rate of the larger sink alwaysby the size ratics. The rate calculated for a pair of identical

occurs as—1 and depends ons‘l for the same reactivity,
i.e., k=ks. As s=1 with A\ *=2, the reaction rate i&

sinks (s=1) provides the upper bound & for the smaller
sink and the lower bound &, for the larger one.

=H,=0.755. Nevertheless, the qualitative behavior of the The diffusive interaction of a reaction-limited sink with a

reaction rate is similar to that associated with diffusion-
limited reaction whatever the value &f * is.

The variation of the reaction rate at contact with* is
shown in Fig. 3 fors=1 and 2 withA; *=s\_'. When
)\S_1<1 (=0.01), the reaction reaches the reaction-limited
regime and the rate is essentiali=1. On the other hand,

1.0

0.9

diffusion limited

o8 |
A'=2,1"=2s

0.7

0.6

[1]

0.5

04

0.3

0.2

0.1

FIG. 2. The variation of the dimensionless reaction rate of two
contact sinks with the size ratio.

diffusion-limited one takes place whexy'—o and ;!
—0. This condition may correspond to a large ratio of the
size or of the rate constant when one of the sink has
k.a,/D<1. In this asymptotic limit, the reaction rates at
contact are solely decided by the size ratio. The effect of
diffusional competition for such a pair is depicted in Fig. 4.
For two sinks of the same size, the diffusive interaction fa-
vors the diffusion-limited sink, of which the rate is slighted
reduced, E4=0.963. However, the rate of the reaction-
limited sink is substantially lowered t&,=0.537. To com-
pensate this effect due to different reactivities, one can re-
duce the size of the diffusion-limited sink. As illustrated in
Fig. 4, whenay/a,=0.218, the size effect cancels out the
reactivity effect and the net result of the diffusive interaction
yields an equal reaction raté, == 4=0.851.

For a polydisperse dispersion of diffusion-limited sinks, it
is found that a higher reaction rate is associated with a larger
surface area for a given volume fractipt0,11]. If the total
volume of the two sinks are fixed, the reaction rate of this
system is given by = (R)=3%[2/(1+s% Y E+sE]
which is scaled by &Dac., with a being the sink radius for
s=1. Obviously, the surface area is maximum @s1.
Whens—o, E,—1 whatever the interparticle separatign
is. Therefore, one has a lower bougig=2"?3. As shown in
Fig. 5, the reaction rat&, declines and reaches the lower
bound as the size ratigsurface areais increased(de-
creasell The size polydispersity leads to a reduction of the
total reaction rate, varying from 0.693 to 0.630 maximally.
Nonetheless, it is only 10% reduction.
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1.0 E and
0.9 _ 1-x 30
0.8 E ‘—’0,|(X1y)_ 1_Xy1 ( )
0.7 wherex=a, /R andy=a,/R. If the dipole terms, i.ef; and
E g, are also kept in Eq(6), then the dimensionless reaction
06 rates become
E o5
; =, 0y) 1—y—x3y—4x3y3+2x3y4 31
L = X, =
04 : LslXY 1—xy—x3y—xy>—4x3y3+ x4y4
0.3 F
: and
0.2 F
g 1—-x—xy*—4x3y3+2x4y®
01 | E1y(xy)= YTV Y (@2
e ’ 1-xy—x3y—xy3—4x3y3+ x%y*
0.01 0.1 1 10
s=ala The exact series expressions in E¢&) and (17) con-

verge slowly forR— (a;+a,). However, with the exact se-
FIG. 4. A plot of the reaction ratéat contack associated with  ries solution in hand, we can always use the Shank transform
the diffusive interaction between a diffusion-limited sink and aor the Padaapproximation to obtain an accurate, analytical
reaction-limited one against the size ratio. approximation. The convergence rate of EG®) and (17)
can be greatly improved by the Shank transform,
A. Approximate solutions

The method of twin spherical expansion is based on a XY +XE -y Y+ xS

multipole expansion and the exact solution is obtained by Sss X+y+x2+xy+y? ' (33
keeping infinite multipole contributions. The approximate
solutions can be obtained by considering the first few multi- 9 3...3,.32
poles. The monopole approximation has been widely used in = |:x+y+y TXTEXYTEXTY _ (34)
studying the diffusion-reaction problerfi,13,14,18. If we > X+y+x2+xy+y?
keep the monopole only, i.efy andg, in Eq. (6), the reac-
tion rates for diffusion-limited condition are simply B. Asymptotic analysis for large size ratio(ss>1)
1-y When the size ratio is large, the simplest model is a point

Bos(Xy)= (29 source and a planar surface. Unfortunately, such approach
would lead to a singular perturbation because the leading

0.70 : —————— order concentration due to the planar surface is uniform ev-

1—xy

FIn2 R=2a erywhere, which cannot satisfy the boundary conditions on
oo L > | 1 the planar surface and at infinity simultaneously. Conse-
X Coo at contact [
o ] quently, the planar surface has to be replaced by a sphere.
068 F 1. A point sink and a reactive sphere
067 £ When the size ratio is large, i.es>1, the smaller sink
E can be regarded as a point sink with the reaction cgte
= 066 [ With the origin located at the center of the larger sphere 2,
Tt the concentration profile is then given by
065 [ *
3 W(rp,0,)= > [Ayr3+Br, " VIP (cosb,) for a,
0.64 - n=0
063 | <r,<R. (35
: . . N ] where the coefficientd,, and B, can be determined by the
1 10 boundary condition at,=a,,
s
FIG. 5. The variation of the total diffusion-limited reaction rate A= (i) !
with the size ratio foR=2a and at contact. 4mD )R+l
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and and

2n+1 n

a
h f, for n=0. (43)

47D Rn+1 ’ On

a
R

az

Bh=a26n0— = Ono— E

The reaction rate of the larger sphetg, can then be ob- Substituting Eq(43) into Eq. (42) recovers Eq(40).
tained in terms ofy,,
2. Next order correction

1- i) (36) Now we assume the smaller particle can be represented

47D by a point sink plus a point dipole. The next order correction
can be readily made by following the approach of uneven
truncation of the twin spherical expansion. As a result, the
coefficientsf, andf, are retained. According to Eg&) and
rT89), the equations to be solved include E42) for f,

qZ:_j DVW‘nsz:47TDa2
Az

Note thatq; is still unknown and must to be determined by
the condition associated with the smaller particle. The con
centration at any point can be described by the integral for
of the Laplace equation,

- iop+ [ |~V Ly, ton,|dA = (2)S mey) (@)mﬂ (44)
W(X)_4’7TD31+ N —( w-nz)r—y~|— yE~n2 , 1 R/~ Om R
(37)
o and
wherer,=|x—y| andV,=d/d(y—x). At the point sink, the
concentration is set taw(R)=1. In addition, one has a;\[a,\" a;
gnzéno_(_)<_) f0+(n+1) _)fl for n=0.
1 R/\R R
f V,—ndA=0, (38) (45)
Ay Ty
Using the relations
and
1 0w 8" > (n+1)x"=
JAz (DVW'nZ)E}dA:BnZlW =0 (1-x)2
o a, and
—417(1—47TDR R (39 )
oo 14X
Inserting Eqs(38) and (39) into Eq.(37), the reaction rates nZO (n+1)% T 1-x)°
can be determined:
a, one has
Y
Eo+n,s= -1, 40 = _e _BXxy)
o Taa W B 0= oy 9
R R R
where
and
X X4 2
By % a=1- yz_ 2,4 . 473
- R R a1 1-y" (1=y)"=(A-yH)x%y
=040, — al a2 a 21-1- ( )
“IRR/|VIR and
The above results can also be easily obtained by truncat- B=1—y— x%y?(1-y?)

ing terms in the twin spherical expansion unevenly. The as-
sumption that the smaller particle is considered as a point

means only monopole contributiofy, is kept in Eq.(8). O Herex=a, /R andy=a,/R. The reaction rate for the larger
the other hand, we keep all the multipole contributions forparticle is given by

the larger particle. Therefore, Eq®8) and(9) reduce to
m+1 E1+f>0,|:gO:-’]-_X(fO—‘f_X.I:l)! (47)
(42)

(1-y?)3—x3y(1+y?)

az
R

fo=1—
0=1- 2 Un with
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X3y(1+y2) - X2y ,B 0~8: — 1 T T ' T ' I T T T 7 T T 71
I T | lasyr e Y 07 | . Bxact -
O 1 Monopole -
Note that if those asymptotic results are expanded in Taylor 0.6 g g;‘paonli Transform  H
series, one recovers E(L6) fully from Eq. (46). However, 4 Point Sink 1
using Eq.(40) obtained from a point sink can only give Eq. 05 I 5 Point Sink+Dipole
(16) accurately up t@(y?). : \
Until now we have proposed five approximate solutions, i
including monopoleZ,, dipole =4, shank transfornEs, a S 04T
point sink=Z ..., and a point sink plus dipol& ... These r
approximate results for diffusion-limited reaction can be ac- 03
cessed by the exact solutions. Since the multipole expansion
is good for large separations, one would anticipate that the 02 [
most significant deviation from the exact solution takes place ' Sl -~
at two sinks in touch. As a result, we compare those approxi- 01| _

mate reaction rates with the exact solutionsRdt;=(s e e
+1). Figure 6a) shows the variation of the reaction rate of
the smaller sink with the size ratio. One can see that the
monopole and dipole approximations always underestimate
the rates. On the other hand, regarding the smaller sphere as 1.0 — L I B s B A
a point sink yields results that always overestimate the rates. I B
Both the shank transform and the approximation of a point
sink plus a dipole representing the smaller particle give re-
sults that agree quite well with the exact solutions. The varia-
tion of the reaction rate of the larger sink with the size ratio
is depicted in Fig. ). Similar results are obtained. The
shank transform gives better results for snsadind the error

is less than 6% fos<10. On the other hand, the approxi-
mation of a point sink plus a point dipole yields excellent
results for larges and the error is within 3% fos<10. The

(a) s

09 ~

1

success of this approximation is attributed to the following Exact

fact. The coefficients associated with the large particle, i.e., 1 Monopole

g,, decline slowly whers>1. On the contrary, the coeffi- 4 o neform
cients associated with the smaller particles, ifg., decay 0.7 | 4 Point Sink .
very fast aftem=2. Nevertheless, a=1, this approxima- f 5 Point Sink+Dipole | -
tion gives two different rates=;, . =0.713 and= ;. ¢ N
=0.672. This is not surprising because only two terms are t 2 3 4 5 6 7 8 9 10
kept for one sink while infinite terms are kept for the other (b) s

sink.

FIG. 6. The comparison of the exact solution with the approxi-
mate expressions. The diffusion-limited reaction rate is plotted
against the size ratio fde) the smaller sink an¢b) the larger sink.

The monopole and dipole approximations do not vyield
satisfactory results for two sinks at contact whedeviates
from unity. In addition, the approximate expression E3f)
for monopole level clearly shows the existence of a local
minima at Ria;=(1—1-s )~ ! for s=a,/a;=%(1

+\/§)_ Similarly, Eq.(32) for dipole level also shows a local cantly hindered by the latter due to diffusive interactions.

minima. They are not observed in exact solutions, e.g., Fig. ginally, several approximate expressions with thgoretical
for s=2. This consequence points out the inaccuracy of th ackgrounds have been proposed and compared .W'th.the ex-
act results. The shank transform and the approximation re-

approximations associated with the first few truncated mo-

ments. However, it must be noted that the dipole approximagarding the smaller particle as a point sink plus a point di-

tion does give an excellent agreement with the exact squtioROIe e values in reasonable agreement W'th. the exact
ats=1 and this fact is also shown in Fig.[6,17]. solutions. These approaches for obtaining approximate solu-

Our analysis indicates that the diffusive interactions cantlons of diffusion-limited condition can also be applied to

be significantly influenced by the size and reactivity effects.re‘r’mt've spheres with first-order surface reacfiéh

The competitive diffusion favors the larger particle and the

rgaction re}te of the smaller one is :_substan?ially reduced as the ACKNOWLEDGMENT
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