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Competitive diffusion into two reactive spheres of different reactivity and size

Heng-Kwong Tsao*
Department of Chemical and Materials Engineering, National Central University, Chung-li, Taiwan 320, Republic of China

~Received 18 February 2002; published 23 July 2002!

Exact series solutions for the reaction rates of two reactive spheres of different reactivity and size are
presented. The reaction rates are explicitly expressed in terms of the interparticle distance from reaction- to
diffusion-limited conditions. The competitive diffusion favors the larger particle and the reaction rate of the
smaller one is significantly reduced as the size ratio increases. For interactions between a diffusion-limited sink
and a reaction-limited one, the diffusive interaction favors the reaction rate of the former and hinders that of the
latter. Several approximate expressions have been proposed and compared with the exact results. The mono-
pole approximation always underestimates the rate of the smaller sink for diffusion-limited reaction. The
asymptotic limit of large size ratio is also analyzed. The asymptotic expression gives a quite accurate result if
the smaller particle is regarded as a point sink plus a point dipole.
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I. INTRODUCTION

Diffusion to the reactive particles is a subject that is r
evant to a great number of chemical and physical proces
these include reactions in porous solids and catalysts, cry
growth and coarsening, metabolism rates in cells, etc.@1,2#.
The diffusional interaction of a pair of reactive particles is
interest in investigating the effect of the existence of
second particle on the reaction rate. Previous studies on
diffusion-reaction problems have primarily focused on ide
tical sinks@3–9#. In the limit of pure diffusion control, Sam
son and Deutch@3# have solved the Laplace equation to o
tain the reaction rate of two reactive sinks in terms
bispherical coordinate. Zoia and Strieder@4# have accounted
for the finite surface reaction rate by following the sam
approach. Both the exact@4# and asymptotic@5# solutions of
the reaction rate are obtained by solving the recurrence r
tions iteratively. Their solution form is somewhat unhand
The reaction rate of the diffusion-reaction problem, which
explicitly expressed in terms of interparticle distance h
been derived recently by twin spherical expansion@6#. The
results obtained by keeping terms up to quadrupole le
gives values in excellent agreement with the exact soluti

Since the size distribution of the sinks or traps in ma
practical systems is not monodisperse, there is a nee
understand the competition effects on the reaction rate du
unequal sizes. The effect of polydispersity in trap size on
reaction rate associated with diffusion-controlled react
among unbounded dispersions of spherical sinks has b
examined@10–14#. The reaction rate~relative to the mono-
disperse case! is found to increase with increasin
interfacial-surface area of the sinks@10,11#. Nonetheless, to
our knowledge no theoretical expression for two unequal
active spheres is available. In addition to polydispersity
size, the reactivity of the sinks may be different. For e
ample, in the biological waste-water treatment and che
manufacture, multiple microbial species are required. A
result, the competition effect may occur for two species w
different ability ~reactivity! of utilizing the limiting nutrient.

*Email address: hktsao@colloid.che.ncu.edu.tw
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In this paper, the reaction rates for diffusion into two u
equal sinks is obtained analytically from reaction-
diffusion-limited conditions. The rate constants of the fir
order surface reaction on the two sinks of different size c
be different. The outline of the paper is as follows. In Sec.
on the basis of twin spherical expansion, the exact se
solutions are explicitly expressed in terms of the interparti
distance and the size ratio. The rate of diffusion-limited
action is derived in Sec. III and the reaction rate associa
with a first-order surface reaction is obtained in Sec. IV.
Sec. V the asymptotic analysis for large size ratio is p
sented. By including the first few multipole contribution
terms, analytical approximations are proposed and their
curacies are assessed by the exact solution.

II. THEORETICAL BACKGROUND

Consider a reactant diffusing with a diffusivityD through
the inert bulk phase surrounding two reactive spheres of r
a1 and a2. Their center-to-center distance isR apart. The
reactant concentrationc(r ) is described by the Laplace equ
tion

D“

2c~r !50. ~1!

At large distance from the reaction pair, the concentration
c5c` . By adopting a dimensionless concentrationw5(c`

2c)/c` , this problem is transformed into a dissolved su
stance diffusing away from the source pair withw50 at
infinity. Assume that the reaction on the reacta
impenetrable surface is first order. Since the diffusional r
equals the reaction rate on the surface of the spherical s
one has the boundary condition

D“w•ni5ks,i~w21!, ~2!

whereni is the outwardly directed unit normal andks,i is the
surface reaction rate constant of the particlei. If the reaction
is pure diffusion control, the boundary conditions on the s
faces of the particles becomew51, i.e.,c50.

The Laplace equation~1! can be solved in spherical coo
dinates by the method of twin spherical harmonic exp
©2002 The American Physical Society08-1
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sions. Owing to the azimuthal symmetry, the solution
given by

w5 (
n50

` F f nS a1

r 1
D n11

Pn~cosu1!1gnS a2

r 2
D n11

Pn~cosu2!G .
~3!
d-

e

th

e
f

01110
There are two spherical coordinate systems, (r 1 ,u1) and
(r 2 ,u2), with origins located in the centers of sphere 1 a
2, respectively. One of the multipole expansions can
transformed into the other set of spherical coordina
through an addition theorem of Legendre functions deriv
by Hobson@15#,
S 1

r k
D n11

Pn~cosuk!5S 1

RD n11

(
q50

` S n1q

q D S r 32k

R D q

Pq~cosu32k! for r 32k,R. ~4!

The concentration distribution can then be rewritten as

w~r 1 ,u1!5 (
n50

` F f nS a1

r 1
D n11

1S r 1

R D n

(
m50

`

gmS m1n

n D S a2

R D m11GPn~cosu1! for r 1,R ~5!

or

w~r 2 ,u2!5 (
n50

` FgnS a2

r 2
D n11

1S r 2

R D n

(
m50

`

f mS m1n

n D S a1

R D m11GPn~cosu2! for r 2,R. ~6!
ci-
we

re
The coefficientsf i andgi are to be determined by the boun
ary condition.

III. DIFFUSION-LIMITED CONDITION

In the limit of pure diffusion control for both sinks, th
boundary conditions are simply

w~r 15a1!5w~r 25a2!51. ~7!

Substituting Eqs.~5! and~6! into the boundary condition~7!
and using the orthogonality property associated with
Legendre polynomials yields

dn05 f n1S a1

R D n

(
m50

`

gmS m1n

n D S a2

R D m11

~8!

and

dn05gn1S a2

R D n

(
m50

`

f mS m1n

n D S a1

R D m11

, ~9!

wherednm51 for n5m, dnm50 otherwise.
Equations~8! and ~9! can be solved analytically by th

iteration method. Letf n and gn be expressed in terms o
infinite series,
e

f n5(
i 50

`

f n
( i ) and gn5(

i 50

`

gn
( i ) . ~10!

WhenR→`, the above result should reduce to that asso
ated with an isolated reactive sphere. Consequently,
choosef n

(0) andgn
(0) to satisfy the solutions of a single sphe

of radiusa1 or a2, respectively,

f n
(0)5dn0 and gn

(0)5dn0 . ~11!

This result can serve as a leading order solution.
Inserting Eq.~10! into Eqs.~8! and ~9!, one obtains the

level k correction,f n
(k) and gn

(k) , in terms of the solution at
(k21) level, f n

(k21) andgn
(k21) , for k>1,

f n
(k)52S a1

R D n

(
m50

`

gm
(k21)S m1n

n D S a2

R D m11

~12!

and

gn
(k)52S a2

R D n

(
m50

`

f m
(k21)S m1n

n D S a1

R D m11

. ~13!

The solutions off n
(k) andgn

(k) can then be obtained and
gn
(k)5~21!k (

m150

`

••• (
mk2150

` H )
i 51

k21 S mi 211mi

mi
D J S a2

R D n12(m11•••1mk21)1kS 1

sD 2(m11m31•••)1[(k11)/2]

. ~14!
8-2
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wheres5a2 /a1 andm05n. Note that@x# in the exponent of
s denotes the largest integer less thanx.

The dimensionless reaction rate of the reactive sph
i , J i , scaled by that associated with the same isolated
ticle, is given by

J1~R!5

2E
A
D“w•n1dA

4pDa1c`
5

f 0

f 0
(0)

and

J2~R!5

2E
A
D“w•n2dA

4pDa2c`
5

g0

g0
(0)

, ~15!

where the dimensionless reaction rateJ is obtained by using
Eqs. ~5! and ~6! and the orthogonality property. If we kee
the series solution up to (a2 /R)5, the reaction rates are

J1~R!512S a2

R D1
1

s S a2

R D 2

2
1

s S a2

R D 3

1S 1

s
1

1

s2D S a2

R D 4

2S 1

s
1

1

s2
1

1

s3D S a2

R D 5

1OS a2

R D 6

~16!

and

J2~R!512
1

s S a2

R D1
1

s S a2

R D 2

2
1

s2 S a2

R D 3

1S 1

s2
1

1

s3D
3S a2

R D 4

2S 1

s2
1

1

s3
1

1

s4D S a2

R D 5

1OS a2

R D 6

. ~17!

Equations~16! and~17! are accurate forR@(a11a2). They
reduce to the result of two identical sinks whens51 @6#.

IV. FIRST-ORDER REACTION

When the rate of surface reaction is comparable to
diffusional rate for both sinks, the boundary condition, E
~2!, must be employed. Inserting Eqs.~5! and~6! into Eq.~2!
leads to

f n5
l1

21

~n11!1l1
21

dn02
l1

212n

l1
211~n11!

S a1

R D n

3 (
m50

`

gmS m1n

n D S a2

R D m11

~18!

and
01110
re
r-

e
.

gn5
l2

21

l2
211~n11!

dn02
l2

212n

l2
211~n11!

S a2

R D n

3 (
m50

`

f mS m1n

n D S a1

R D m11

. ~19!

The parameterl i
215ks,iai /D denotes the ratio of the reac

tion rate to the diffusional rate associated with the particli.
The process of the reaction on the particlei is diffusion lim-
ited for l i

21@1 and reaction control ifl i
21!1.

Again, we adopt the series solution, Eq.~10!, to solve the
foregoing equations. The leading order solution is chose
be that associated with the corresponding isolated spher

f n
(0)5

l1
21

l1
211~n11!

dn0

and

gn
(0)5

l2
21

l2
211~n11!

dn0 . ~20!

In terms of the solution at (k21) level, f n
(k21) andgn

(k21) ,
for k>1, one obtains

f n
(k)52L1,nS a1

R D n

(
m50

`

gm
(k21)S m1n

n D S a2

R D m11

~21!

and

gn
(k)52L2,nS a2

R D n

(
m50

`

f m
(k21)S m1n

n D S a1

R D m11

, ~22!

where

L1,n5F l1
212n

l1
211~n11!

G and L2,n5F l2
212n

l2
211~n11!

G ,

~23!

for n>0.
The general solution can then be expressed as
8-3
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f n
(k)5~21!kL1,n~L1,0

(k11)22[(k11)/2]L2,0
k22[(k/2)]! (

m150

`

••• (
mk2150

` H )
i 51

k21 S mi 211mi

mi
DL i 1122[ i /2],miJ

3S a1

R D n12(m11•••1mk21)1k

s2(m11m31•••)1[(k11)/2] ~24!

and

gn
(k)5~21!kL2,n~L1,0

k22[k/2]L2,0
(k11)22[(k11)/2]! (

m150

`

••• (
mk2150

` H )
i 51

k21 S mi 211mi

mi
DL i 22[( i 21)/2],miJ

3S a2

R D n12(m11•••1mk21)1kS 1

sD 2(m11m31•••)1[(k11)/2]

. ~25!
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The dimensionless reaction rateJ i associated with the
spherei, scaled by that of the isolated particle, is given b

J1~R!5

2E
A
D“w•n1dA

4pDa1c`

l1
21

l1
2111

5
f 0

f 0
(0)

and

J2~R!5

2E
A
D“w•n2dA

4pDa2c`

l2
21

l2
2111

5
g0

g0
(0)

. ~26!

If the series solution is truncated after (a2 /R)5, the reaction
rate is written as

J1~R!512L2,0S a2

R D1
L1,0L2,0

s S a2

R D 2

2
L1,0L2,0

2

s S a2

R D 3

1FL1,0L2,1

s
1

~L1,0L2,0!
2

s2 G S a2

R D 4

2FL1,0L2,0L2,1

s

1
L1,0

2 L2,0
3

s2
1

L1,1L2,0
2

s3 G S a2

R D 5

1OS a2

R D 6

~27!

and

J2~R!512
L1,0

s S a2

R D1
L1,0L2,0

s S a2

R D 2

2
L1,0

2 L2,0

s2 S a2

R D 3

1F ~L1,0L2,0!
2

s2
1

L1,1L2,0

s3 G S a2

R D 4

2FL1,0
2 L2,1

s2

1
L1,0

3 L2,0
2

s3
1

L1,0L1,1L2,0

s4 G S a2

R D 5

1OS a2

R D 6

.

~28!
01110
WhenL1,05L2,051, Eqs.~27! and~28! reduce to Eqs.~16!
and ~17! for diffusion-limited condition. On the other hand
for s51 and L1,n5L2,n , we recover the results for two
identical sinks@6#.

V. RESULTS AND DISCUSSION

The reaction rates of two unequal spherical sinks i
mersed in an infinite domain are calculated for different s
ai and reactivityki . Using the method of twin spherica
expansion, the reaction rate can be explicitly expressed
terms of the interparticle distance from reaction-limited
diffusion-limited conditions. Different from identical sinks
there are three independent dimensionless parameters i
termining the reaction rate,l1

21 , l2
21, ands. l i

21 represents
the resistance ratio of diffusion to surface reaction associa
with the sink i and s is the size ratio. There exist thre
asymptotic limits: ~1! diffusion limited, l1

21@1 and l2
21

@1; ~2! l1
21!1 andl2

21@1; ~3! reaction limited,l1
21!1

andl2
21!1. The second regime corresponds to the diffus

interaction between a reaction-limited sink and a diffusio
limited one.

Figure 1 shows the variation of the dimensionless reac
ratesJ with the center-to-center distanceR for the size ratio
s52. The cases considered are:~1! diffusion-limited condi-
tion, ls

215l l
215`; ~2! two sinks of the same reactivity

ls
2152 andl l

2154. As anticipated, the dimensionless rea
tion rates rise and approach unity as the separation increa
Moreover, the diffusional interaction is more significant f
the fast surface reaction than for the slow one. For diffusi
limited condition, the rates of the two particles at contact
J l50.852 for the larger sink andJs50.494 for the smaller
one. Note that the reaction rate for a pair of identical sinks
contact ~relative to that of an isolated sink! is ln 2. As a
consequence, one important feature revealed in Fig. 1 is
the competitive diffusion favors the larger particle and t
reaction rate of the smaller sink is substantially reduced.

To further demonstrate the effect of size differences
the rate, Fig. 2 depicts the variation of the reaction rate
two contact sinks with the size ratio. It clearly shows that t
existence of a larger sink nearby leads to a significant red
8-4
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COMPETITIVE DIFFUSION INTO TWO REACTIVE . . . PHYSICAL REVIEW E 66, 011108 ~2002!
tion of the reaction rate, which declines as the size ratio
increased. On the other hand, with a smaller sink in
neighborhood, the reaction rate is disturbed only to so
extent. The minimum reaction rate of the larger sink alwa
occurs ass→1 and depends onls

21 for the same reactivity,
i.e., kl5ks . As s51 with ls

2152, the reaction rate isJs

5J l50.755. Nevertheless, the qualitative behavior of
reaction rate is similar to that associated with diffusio
limited reaction whatever the value ofls

21 is.
The variation of the reaction rate at contact withls

21 is
shown in Fig. 3 fors51 and 2 withl l

215sls
21 . When

ls
21!1 (&0.01), the reaction reaches the reaction-limit

regime and the rate is essentiallyJ.1. On the other hand

FIG. 1. The variation of the dimensionless reaction rate with
center-to-center distance for the size ratios52.

FIG. 2. The variation of the dimensionless reaction rate of t
contact sinks with the size ratio.
01110
is
e
e
s

e
-

asls
21@1 (*10), the reaction rates are basically the sa

as those of diffusion-limited reaction, which are determin
by the size ratios. The rate calculated for a pair of identica
sinks (s51) provides the upper bound ofJs for the smaller
sink and the lower bound ofJ l for the larger one.

The diffusive interaction of a reaction-limited sink with
diffusion-limited one takes place whenld

21→` and l r
21

→0. This condition may correspond to a large ratio of t
size or of the rate constant when one of the sink h
krar /D!1. In this asymptotic limit, the reaction rates
contact are solely decided by the size ratio. The effect
diffusional competition for such a pair is depicted in Fig.
For two sinks of the same size, the diffusive interaction
vors the diffusion-limited sink, of which the rate is slighte
reduced,Jd50.963. However, the rate of the reactio
limited sink is substantially lowered toJ r50.537. To com-
pensate this effect due to different reactivities, one can
duce the size of the diffusion-limited sink. As illustrated
Fig. 4, whenad /ar50.218, the size effect cancels out th
reactivity effect and the net result of the diffusive interacti
yields an equal reaction rateJ r5Jd50.851.

For a polydisperse dispersion of diffusion-limited sinks,
is found that a higher reaction rate is associated with a la
surface area for a given volume fraction@10,11#. If the total
volume of the two sinks are fixed, the reaction rate of t
system is given by J t(R)5 1

2 @2/(11s3)#1/3@Js1sJ l #,
which is scaled by 8pDac` with a being the sink radius for
s51. Obviously, the surface area is maximum ass51.
Whens→`, J l→1 whatever the interparticle separationR
is. Therefore, one has a lower boundJ t5222/3. As shown in
Fig. 5, the reaction rateJ t declines and reaches the low
bound as the size ratio~surface area! is increased~de-
creased!. The size polydispersity leads to a reduction of t
total reaction rate, varying from 0.693 to 0.630 maximal
Nonetheless, it is only 10% reduction.

e

o

FIG. 3. The variation of the dimensionless reaction rate of t
contact sinks with the parameterls

21 for different size ratios,s
51 and 2.
8-5
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A. Approximate solutions

The method of twin spherical expansion is based o
multipole expansion and the exact solution is obtained
keeping infinite multipole contributions. The approxima
solutions can be obtained by considering the first few mu
poles. The monopole approximation has been widely use
studying the diffusion-reaction problems@2,13,14,16#. If we
keep the monopole only, i.e.,f 0 andg0 in Eq. ~6!, the reac-
tion rates for diffusion-limited condition are simply

J0,s~x,y!5
12y

12xy
~29!

FIG. 4. A plot of the reaction rate~at contact! associated with
the diffusive interaction between a diffusion-limited sink and
reaction-limited one against the size ratio.

FIG. 5. The variation of the total diffusion-limited reaction ra
with the size ratio forR52a and at contact.
01110
a
y

i-
in

and

J0,l~x,y!5
12x

12xy
, ~30!

wherex5a1 /R andy5a2 /R. If the dipole terms, i.e.,f 1 and
g1 are also kept in Eq.~6!, then the dimensionless reactio
rates become

J1,s~x,y!5
12y2x3y24x3y312x3y4

12xy2x3y2xy324x3y31x4y4
~31!

and

J1,l~x,y!5
12x2xy324x3y312x4y3

12xy2x3y2xy324x3y31x4y4
. ~32!

The exact series expressions in Eqs.~16! and ~17! con-
verge slowly forR→(a11a2). However, with the exact se
ries solution in hand, we can always use the Shank transf
or the Pade´ approximation to obtain an accurate, analytic
approximation. The convergence rate of Eqs.~16! and ~17!
can be greatly improved by the Shank transform,

Js,s5
x1y1x22y31yx31x2y3

x1y1x21xy1y2
, ~33!

Js,l5
x1y1y22x31xy31x3y2

x1y1x21xy1y2
. ~34!

B. Asymptotic analysis for large size ratio„sš1…

When the size ratio is large, the simplest model is a po
source and a planar surface. Unfortunately, such appro
would lead to a singular perturbation because the lead
order concentration due to the planar surface is uniform
erywhere, which cannot satisfy the boundary conditions
the planar surface and at infinity simultaneously. Con
quently, the planar surface has to be replaced by a sphe

1. A point sink and a reactive sphere

When the size ratio is large, i.e.,s@1, the smaller sink
can be regarded as a point sink with the reaction rateq1.
With the origin located at the center of the larger sphere
the concentration profile is then given by

w~r 2 ,u2!5 (
n50

`

@Anr 2
n1Bnr 2

2(n11)#Pn~cosu2! for a2

<r 2,R. ~35!

where the coefficientsAn andBn can be determined by th
boundary condition atr 25a2,

An5S q1

4pD D 1

Rn11
8-6
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and

Bn5a2dn02
q1

4pD

a2n11

Rn11
.

The reaction rate of the larger sphere,q2, can then be ob-
tained in terms ofq1,

q252E
A2

D“w•n2dA54pDa2S 12
q1

4pDRD . ~36!

Note thatq1 is still unknown and must to be determined b
the condition associated with the smaller particle. The c
centration at any point can be described by the integral fo
of the Laplace equation,

w~x!5
q1

4pDa1
1E

A2

F2~D“w•n2!
1

r y
1“y

1

r y
•n2GdA,

~37!

wherer y5ux2yu and“y5]/](y2x). At the point sink, the
concentration is set tow(R)51. In addition, one has

E
A2

“y

1

r y
•n2dA50, ~38!

and

E
A2

F ~D“w•n2!
1

r y
GdA5

q1

D (
n51

` a2
n11

R2n12

24pS 12
q1

4pDRD a2

R
. ~39!

Inserting Eqs.~38! and ~39! into Eq. ~37!, the reaction rates
can be determined:

J01`,s5

12
a2

R

12S a1

R

a2

R D F12S a2

R D 2G21 , ~40!

and

J01`,l512

a1

R S 12
a2

R D
12S a1

R

a2

R D F12S a2

R D 2G21 . ~41!

The above results can also be easily obtained by trun
ing terms in the twin spherical expansion unevenly. The
sumption that the smaller particle is considered as a p
means only monopole contribution,f 0, is kept in Eq.~8!. On
the other hand, we keep all the multipole contributions
the larger particle. Therefore, Eqs.~8! and ~9! reduce to

f 0512 (
m50

`

gmS a2

R D m11

~42!
01110
-
m

t-
s-
nt

r

and

gn5dn02S a1

R D S a2

R D n

f 0 for n>0. ~43!

Substituting Eq.~43! into Eq. ~42! recovers Eq.~40!.

2. Next order correction

Now we assume the smaller particle can be represe
by a point sink plus a point dipole. The next order correcti
can be readily made by following the approach of unev
truncation of the twin spherical expansion. As a result,
coefficientsf 0 and f 1 are retained. According to Eqs.~8! and
~9!, the equations to be solved include Eq.~42! for f 0,

f 152S a1

R D (
m50

`

~m11!gmS a2

R D m11

~44!

and

gn5dn02S a1

R D S a2

R D nF f 01~n11!S a1

R D f 1G for n>0.

~45!

Using the relations

(
n50

`

~n11!xn5
1

~12x!2

and

(
n50

`

~n11!2xn5
11x

~12x!3
,

one has

J11`,s5 f 05
b~x,y!

a~x,y!
, ~46!

where

a512
xy

12y2
2

x4y2

~12y2!42~12y4!x3y

and

b512y2
x3y2~12y2!

~12y2!32x3y~11y2!
.

Herex5a1 /R andy5a2 /R. The reaction rate for the large
particle is given by

J11`,l5g0512x~ f 01x f1!, ~47!

with
8-7
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f 15F12
x3y~11y2!

~12y2!3 G21F x2y

~12y2!2

b

a
2xyG .

Note that if those asymptotic results are expanded in Ta
series, one recovers Eq.~16! fully from Eq. ~46!. However,
using Eq.~40! obtained from a point sink can only give Eq
~16! accurately up toO(y4).

Until now we have proposed five approximate solutio
including monopoleJ0, dipole J1, shank transformJs , a
point sinkJ01` , and a point sink plus dipoleJ11` . These
approximate results for diffusion-limited reaction can be
cessed by the exact solutions. Since the multipole expan
is good for large separations, one would anticipate that
most significant deviation from the exact solution takes pl
at two sinks in touch. As a result, we compare those appr
mate reaction rates with the exact solutions atR/a15(s
11). Figure 6~a! shows the variation of the reaction rate
the smaller sink with the size ratio. One can see that
monopole and dipole approximations always underestim
the rates. On the other hand, regarding the smaller sphe
a point sink yields results that always overestimate the ra
Both the shank transform and the approximation of a po
sink plus a dipole representing the smaller particle give
sults that agree quite well with the exact solutions. The va
tion of the reaction rate of the larger sink with the size ra
is depicted in Fig. 6~b!. Similar results are obtained. Th
shank transform gives better results for smalls and the error
is less than 6% fors<10. On the other hand, the approx
mation of a point sink plus a point dipole yields excelle
results for larges and the error is within 3% fors<10. The
success of this approximation is attributed to the followi
fact. The coefficients associated with the large particle,
gn , decline slowly whens@1. On the contrary, the coeffi
cients associated with the smaller particles, i.e.,f n , decay
very fast aftern>2. Nevertheless, ats51, this approxima-
tion gives two different rates.J11`,s50.713 andJ11`,s
50.672. This is not surprising because only two terms
kept for one sink while infinite terms are kept for the oth
sink.

The monopole and dipole approximations do not yie
satisfactory results for two sinks at contact whens deviates
from unity. In addition, the approximate expression Eq.~30!
for monopole level clearly shows the existence of a lo
minima at R/a15(12A12s21)21 for s5a2 /a1> 1

2 (1
1A5). Similarly, Eq.~32! for dipole level also shows a loca
minima. They are not observed in exact solutions, e.g., Fi
for s52. This consequence points out the inaccuracy of
approximations associated with the first few truncated m
ments. However, it must be noted that the dipole approxim
tion does give an excellent agreement with the exact solu
at s51 and this fact is also shown in Fig. 6@6,17#.

Our analysis indicates that the diffusive interactions c
be significantly influenced by the size and reactivity effec
The competitive diffusion favors the larger particle and t
reaction rate of the smaller one is substantially reduced as
size ratio increases. When a particle subject to a slow re
tion is in the neighborhood of another particle with a fa
reaction, the reaction rate of the former can also be sign
01110
r
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e
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as
s.
t
-
-

t

.,

e
r

l

1
e
-
-
n

n
.

he
c-
t
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cantly hindered by the latter due to diffusive interaction
Finally, several approximate expressions with theoreti
backgrounds have been proposed and compared with the
act results. The shank transform and the approximation
garding the smaller particle as a point sink plus a point
pole give values in reasonable agreement with the ex
solutions. These approaches for obtaining approximate s
tions of diffusion-limited condition can also be applied
reactive spheres with first-order surface reaction@6#.
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FIG. 6. The comparison of the exact solution with the appro
mate expressions. The diffusion-limited reaction rate is plot
against the size ratio for~a! the smaller sink and~b! the larger sink.
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